2216099122@qq.com
cs代写,cs代做,python代写,java代写,c,c++,作业,代码,程序,编程,it,assignment,project,北美,美国,加拿大,澳洲
cs代写,cs代做,python代写,java代写,c,c++,作业,代码,程序,编程,it,assignment,project,北美,美国,加拿大,澳洲

扫码添加客服微信
python
# 导入必要库
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10
import matplotlib.pyplot as plt
# 1. 数据加载与预处理
def load_and_preprocess_data():
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0 # 归一化到[0,1]
y_train, y_test = y_train.flatten(), y_test.flatten() # 展平标签
return (x_train, y_train), (x_test, y_test)
# 2. 模型构建
def build_model(input_shape, num_classes):
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(num_classes, activation='softmax')
])
return model
# 3. 模型编译与训练
def train_model(model, x_train, y_train, x_val, y_val, epochs=10):
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
history = model.fit(x_train, y_train,
epochs=epochs,
validation_data=(x_val, y_val))
return history
# 4. 模型评估与可视化
def evaluate_and_plot(model, x_test, y_test, history):
# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
print(f"Test Accuracy: {test_acc:.4f}")
# 绘制训练过程
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Val Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
# 主函数
def main():
# 加载数据
(x_train, y_train), (x_test, y_test) = load_and_preprocess_data()
# 划分验证集
val_split = int(0.8 * len(x_train))
x_val, x_train = x_train[val_split:], x_train[:val_split]
y_val, y_train = y_train[val_split:], y_train[:val_split]
# 构建模型
input_shape = x_train.shape[1:] # (32, 32, 3)
num_classes = 10 # CIFAR-10有10个类别
model = build_model(input_shape, num_classes)
# 训练模型
history = train_model(model, x_train, y_train, x_val, y_val, epochs=10)
# 评估与可视化
evaluate_and_plot(model, x_test, y_test, history)
if __name__ == "__main__":
main()
Sequential
API构建卷积神经网络(CNN)。
Adam
优化器和交叉熵损失函数。
tf.keras.preprocessing.image.ImageDataGenerator
进行数据增强(如旋转、翻转)。
tf.keras.mixed_precision
)。
tf.lite
或TensorFlow Serving
导出模型。
.h5
)、可视化结果。
合作方式:
此代码可直接运行(需安装TensorFlow 2.x),适合快速验证图像识别任务。根据客户需求,可进一步调整模型复杂度或集成高级功能。